Acta Cryst. (1967). 23, 780

Étude par Diffraction de Rayons X de Complexes d'Halogénures Alcalins et de Molécules Organiques.

IX. Structures de LiBr. 2NH₂CH₂CH₂NH₂ et de LiCl. 2NH₂CH₂CH₂NH₂*

PAR FRANÇOIS DURANT[†], PAUL PIRET[‡] ET MAURICE VAN MEERSSCHE

Laboratoire de Chimie physique et de Cristallographie, Université de Louvain, Schapenstraat 39, Louvain, Belgique

(Reçu le 22 mars 1967)

The crystal structures of LiBr.2NH₂CH₂CH₂NH₂ and LiCl.2NH₂CH₂CH₂NH₂ have been determined from single-crystal data by a three-dimensional X-ray analysis, refined by Fourier synthesis and least-squares method. The two compounds are isomorphous and crystallize in the monoclinic system, space group C2/c, Z=4.

LiBr. 2en: a = 8.99, b = 12.69, c = 8.32 Å, $\beta = 93^{\circ}49'$, R = 0.123. LiCl. 2en: a = 8.88, b = 12.64, c = 8.10 Å, $\beta = 93^{\circ}04'$, R = 0.151.

Each lithium ion is tetrahedrally surrounded by four nitrogen atoms (NH₂) from three ethylenediamine molecules. One molecule has the gauche form with the carbon atoms symmetrically arranged from the N-Li-N plane; the others are centrosymmetric with the nitrogen atoms in *trans* positions. The structure consists of infinite molecular chains parallel to [001] and held together by means of N-H···X-bonds. There are no bonds Li+-X-. The only difference between the configurations of the two compounds results from the difference between the radii of the halide ions. Mean distances: Li-N 2·07, C-N 1·48, C-C 1·51 Å.

Nous avons décrit précédemment la structure de plusieurs composés d'addition entre molécules organiques et halogénures alcalins.§ Dans chaque cas, les molécules de coordinat sont liées à l'ion alcalin par l'intermédiaire de leurs atomes d'oxygène ou d'azote. Nous poursuivons cette étude par la description de complexes formés avec l'éthylènediamine (en). On verra l'intérêt que présente l'étude de la structure de ce ligand; en effet, en plus de la forme gauche qui lui est habituelle, l'éthylènediamine prend une conformation rare (molécule centrosymétrique) trouvée seulement dans deux dérivés du platine (Truter & Cox, 1956; Robson & Truter, 1965).

Préparation des cristaux

Les halogénures alcalins se dissolvent dans l'éthylènediamine. Ils s'associent avec le solvant et forment des composés d'addition dont la composition pondérale déterminée expérimentalement par Isbin & Kobe (1945) correspond aux formules stoechiométriques suivantes: LiCl.2en, LiBr.2en, LiI.3en, NaCl.en, NaBr.en, NaI.en, KCl.en, KBr.en, KI.en. Nous avons préparé les complexes LiBr.2en et LiCl.2en en dissolvant à

* Résultats extraits de la thèse de Doctorat de F. Durant (Durant, 1965).

‡ Chercheur qualifié du FNRS (Fonds National Belge de la Recherche Scientifique).

chaud du bromure ou du chlorure de lithium anhydre dans l'éthylènediamine. Les cristaux obtenus après refroidissement se présentent sous la forme d'aiguilles prismatiques incolores. Ils sont très hygroscopiques. Leur température de décomposition mesurée au microscope de Kofler est voisine de 88°C pour le composé bromé et de 68°C pour le complexe chloré. Pour les étudier, nous les avons introduits dans des tubes capillaires en verre de Lindemann que nous avons maintenus dans un courant continu d'air froid (environ 2°C).

Paramètres et groupe spatial

Les dimensions de la maille-unité ont été mesurées sur des diagrammes de rotation autour de [001] (axe d'allongement du cristal) et de Weissenberg hk0 en utilisant le rayonnement filtré (Ni) d'un tube à anticathode de Cu ($K\alpha=1,5418$ Å). Les clichés ont été étalonnés par le spectre d'un fil d'argent (a=4,0857 Å). Nous avons calculé les angles β à partir des diagrammes de Weissenberg hk4 et hk5 en appliquant la méthode de la trace angulaire décrite par Buerger (1958). LiCl.2en et LiBr.2en sont isotypes. Ils appartiennent au système monoclinique et leurs paramètres valent:

LiBr.2en	LiCl.2en
$a = 8,99 \pm 0,03 \text{ Å}$	$a = 8,88 \pm 0,04 \text{ Å}$
$b = 12,69 \pm 0,03$	$b = 12,64 \pm 0,03$
$c = 8,32 \pm 0,04$	$c = 8,10 \pm 0,04$
$\beta = 93^{\circ}49' \pm 20'$	$\beta = 93^{\circ}04' \pm 20'$
$d(\text{calcul\'ee}) = 1,46$	$d(\text{calcul\'ee}) = 1,19$
$d(\text{mesur\'ee}) = 1,41$	$d(\text{mesur\'ee}) = 1,14$

[†] Titulaire d'une bourse de spécialisation de l'IRSIA (Institut pour l'encouragement de la Recherche Scientifique dans l'Industrie et l'Agriculture).

[§] Derniers composés étudiés: LiCl.2pyridine. H₂O (Durant, Piret & Van Meerssche, 1966) et LiCl.pyridine (Durant, Verbist & Van Meerssche, 1966).

Les densités mesurées par 'flottation' dans un mélange CCl₄-C₆H₆ correspondent à celles calculées pour une maille contenant 4 unités LiX.2en. Les réseaux réciproques dans leur ensemble ont été explorés au moyen de diagrammes de Weissenberg pris en équiinclinaison au moyen d'une caméra munie du dispositif intégrateur de Wiebenga & Smits (1950). Nous avons enregistré les réflexions hkl pour l variant de 0 à 6 par la technique des films superposés (0 à 5 pour LiCl.2en). Les intensités des réflexions (849 pour LiBr.2en et 702 pour LiCl.2en) ont été mesurées par comparaison visuelle à une échelle de référence. Elles ont été corrigées par les facteurs de Lorentz et de polarisation et portées à l'échelle absolue par la méthode statistique de Wilson (1942). La section des cristaux irradiés étant suffisamment petite (± 0.2 mm de diamètre), nous n'avons appliqué aucune correction d'absorption. Les extinctions systématiques sont celles des groupes spatiaux Cc et C2/c. La projection de ces groupes suivant [001] correspond aux groupes plans cm, non centrosymétrique, et cmm, centrosymétrique. Nous avons pu faire la distinction entre ces deux groupes en appliquant à la projection (001) de LiBr. 2en la méthode statistique de Howells, Phillips & Rogers (1950). Les résultats obtenus concordent avec ceux établis dans le cas d'une structure centrosymétrique si l'on admet un léger déplacement de la courbe expérimentale résultant d'une perturbation due à l'atome lourd (cf. Sim, 1958). La symétrie de la maille cristalline, confirmée par la structure finale, est donc celle du groupe C2/c. La multiplicité étant de 8, les atomes d'halogène et de lithium doivent être en position spéciale.

Détermination des structures

LiBr.2NH2CH2CH2NH2

Les coordonnées de tous les atomes (hydrogènes exceptés) ont été obtenues par la méthode de l'atome lourd, grâce à une synthèse de Patterson et à trois séries de Fourier tridimensionnelles. A ce stade nous avons amélioré les coefficients de température du brome (1,92 Å²), du carbone (2,47 Å²) et de l'azote (2,47 Å²) en recherchant la valeur minimum de l'indice de désaccord $(R = \Sigma ||F_o| - |F_c||/\Sigma |F_o|)$ pour différentes valeurs de ceux-ci (R=0,145). Ensuite les coordonnées atomiques, les facteurs de température et les coefficients d'échelle ont été affinés (chaque paramètre séparément) par la méthode des moindres carrés (Germain, Piret, Van Meerssche & De Kerf, 1962). Un poids statistique artificiel a été choisi pour accélérer l'affinement d'après la méthode de Hughes telle qu'elle est décrite par Lavine & Rollett (1956). Nous avons attribué à chaque atome un coefficient de température isotrope; nous n'avons pas tenu compte de la contribution des atomes d'hydrogène. Les facteurs de forme atomique utilisés sont ceux de Berghuis et al. introduits sous forme de développement en fonction de Gauss par Vand, Eiland & Pepinsky (1957). Après quatre itérations, les variations des paramètres deviennent négligeables. L'indice de désaccord R entre facteurs de structure observés et calculés est alors réduit à 0,123 (nous avons inclu les réflexions inférieures au minimum observable en leur donnant une valeur correspondant à la moitié du facteur observé minimum).

LiCl.2NH2CH2CH2NH2

Après avoir attribué aux atomes (lithium excepté) les coordonnées relevées pour le composé bromé, nous avons ajusté la seule coordonnée variable (y) du Cl par la méthode des essais et erreurs (y=0.2165; R=0,232). Les coordonnées de tous les atomes ont ensuite été améliorées par deux synthèses de Fourier; la position du lithium a été repérée sur la première d'entre elles. Nous avons affiné tous les paramètres par moindres carrés en appliquant le programme de King (1963) dans lequel il est tenu compte de la corrélation entre les facteurs d'échelle et les coefficients de température. Nous avons accordé à chaque intensité un poids W= $1/(2F_{\min} + |F_o| + 2|F_o|^2/F_{\max})$ en nous référant au procédé de pondération enseigné par Cruickshank, Pilling, Bujosa, Lovell & Truter (1961). Les facteurs atomiques que nous avons employés sont ceux indiqués dans les International Tables for X-ray Crystallography (1962), Tableau 3.3.1A, pour Li+, Cl-, N et C. Tous les calculs ont été effectués sur un ordinateur IBM 1620. L'indice de désaccord obtenu après quatre itérations vaut: R=0,151.

Les valeurs définitives des coordonnées atomiques, des constantes de température et des écarts-types calculés par inversion de matrices sont consignées dans les Tableaux 1 (LiBr.2en) et 3 (LiCl.2en). Les Tableaux 2 et 4 rassemblent les facteurs de structure correspondant aux paramètres finaux.

Tableau 1. LiBr.2en. Coordonnées atomiques avec écarts-types en dix-millièmes des paramètres a, b et c. Constantes de température B et leurs écarts-types en Å

	$x \sigma_x$	$y \qquad \sigma_y$	$z \sigma_z$	$B \sigma_B$
Br	0000 ± 0	2088 ± 1	2500 ± 0	$1,99 \pm 0,04$
Li	5000 ± 0	1899 ± 24	2500 ± 0	$1,54 \pm 0,44$
N(1)	6348 ± 15	3095 ± 10	3483 ± 20	$2,40 \pm 0,20$
N(2)	3843 ± 14	1132 ± 9	4207 ± 19	$2,33 \pm 0,19$
C(1)	5851 ± 17	4032 ± 13	2548 ± 24	$2,95 \pm 0,21$
C(2)	4180 ± 14	0044 ± 11	4695 ± 19	$2,24 \pm 0,21$

Description et discussion des structures

LiBr.2NH₂CH₂CH₂NH₂

Les molécules d'éthylènediamine se présentent sous deux formes (Figs. 1 et 2). La première possède un seul élément de symétrie: un axe binaire perpendiculaire aux vecteurs C(1)-C(1') et N(1)-N(1'); nous l'appelons forme gauche (molécule en_g). La seconde a la symétrie 2/m si l'on fait abstraction des atomes d'hydrogène; elle est plane et centrosymétrique (molécule en_g).

Les distances sont pratiquement les mêmes dans les deux formes, 1,47 Å pour C-N et 1,53 Å pour C-C. Les angles N-C-C valent 107,2° pour l'en_g et 109,7°

782 COMPLEXES D'HALOGÉNURES ALCALINS ET DE MOLÉCULES ORGANIQUES. IX.

Tableau 2. Facteurs de structure observés et calculés pour LiBr.2en

On a noté successivement h, k, $10F_o$ et $10F_c$. Le signe moins devant F_o indique une réflexion non observée: on a pris comme F_o la moitié du F_o minimum.

-01 01 4	IO 08 II 01 II 03 I 00 02 6 00 04 3 00 06 2 00 08 3 00 10 9 00 12 4 00 14 2 00 16	04 14 05 03 36 05 05 05 05 05 05 05 05 05 05 05 05 05	04 10 22
* I	667 61- 03 03 227 38 05 03 187 181- 07 03 174 944- 09 03 193 205 11 02 04 115 02 04 117 934 04 04 163 421- 08 04 163 421- 08 04 164 01 05 166 228 10 05	05 327 - 08 07 8 45 927 9 8 10 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	-03 03 -03 03 -03 03 -03 05 -
187 16105 116 12507 846 82902 1 897 81404	806 893 -006 (208 -088 (20	352 349 -110 233 222 -020 292 288046 256 268 -66 0-65 22100 0 111 124031 315 312 -070 201 154070 201 154070 201 155-40 201 159 270066 204 725070 313 82 -056 204 205070 311 199 270066 34 725070 353 346046 3539 481046 3539 481066 364 725070 362 1049070 362 1049070 362 1049070 362 1049070 362 1049070 362 1049070 362 1049070 362 1049070 362 1049070 362 1049070 362 1049070 362 1049070 362 1049070 363 346070 363 346070 363 346070 364 253070 365 2049070 366 205070 367 2050	102 232 101 001 101 11305 103 01 001 101 11305 103 01 101 101 101 101 101 101 101 101
I -75 IOO I 310 293 I 24I -20I 2 416 432 2 39I 393 2 285 3I5	8 203 199 736 741 9 535 495 9 191 180 9 125 125 194 210 0 504 458 0 382 371 0 357 356 0 313 321 1 -75 74	150 151	378 326 170 174 153 176 165 366 326 167 174 165 366 326 167 174 167
-06 02 -08 02 -10 02 -01 03 -03 03 -05 03 -07 03	-03 0I -05 0I -07 0I -09 0I -11 0I -02 02	IO 06 OI 07 O3 07 O3 07 O5 07 O7 07 O9 07 O9 07 O9 07 O9 08 O6 08 O6 08 O7 09	00 12 00 16 00 00 17 00 17 00 10 00 00 00 00 00 00 00 00 00 00 00
557 570 175 173 -60 71 499 587- 634 631- 588 529-	L = 3 .603 764 465 461 702 706 626 624 347 335 153 195 227 167 653 708 557 570	-69 6869 6869 6869 6869 69	448 555 1188 2190 1118 1190 1118 1190 1118 1190 1118 1190 1118 1190 1118 1190 1118 1190 1118 1190 1118 1190 1118 1190 118 1190 118 1190 118 1190 1191 1191 1191 1191 1191 1191 1191
01 09 03 09 05 09 07 09 02 10 04 10	06 06 08 06 10 06 01 07 03 07 05 07 07 07 09 07 02 08 04 08 06 08 08 08 01 09	00 04 00 06 00 08 00 08 00 10 00 12 00 12 00 14 01 01 03 01 05 01 07 01 09 01 09 02 10 02 06 02 08 02 10 02 01 03 03 03 05 03 05 03 07 03 09 04 04 06 04 06 04 06 05 07 07 05 07 05 07 05 07 07 08 07	-09 05 -04 06 -08 06 -08 06 -01 07 -05 07 -07 07 -09 08 -04 08 -08 09 -08 09 -08 10 -08 10 -0
350	230 322 317 -77 -74 -49 563 648 445 235	-30 1008 11 1011 11 399 3 126 7 77 194 11 719 3 467 3 530 4 467 3 579 470 260 085 673 653 653 672 478 230 1071 14 475 344 4475 348 145 309 1071 14 475 344 447 351 351 351 351 351 351 351 351 351 351	5416 4263 1237 -757 4266 4817 2398 4068 4817 2398 4068 1129 454 4299 454 1239 3665 1139 3665 1139 1159
361- 05 01 340- 02 02 234- 04 02 243- 06 02 143 08 02 277 10 02	366 - 04 14 478 00 02 330 00 04 238 00 06 226 00 08 20 00 10 16- 00 12 43 00 14 507- 01 01 571- 03 01 434- 05 01 255- 07 01 3561- 09 01	7702 06 7704 06 88406 06 88406 06 88406 06 88407 07 10705 07 10705 07 10705 07 10705 07 10705 07 10705 07 10705 07 10705 07 111305 09 10707 07 111407 11 11507 11 11507 11 11507 11 11607 11 11607 11 11607 11 11607 11 11607 11 11607 11 11607 11 11707 11 11807 11 11907 11 11907 11 11007 12 11007 12	7.24
666 919 634 280 159	144 398 439 -59 162 457 256 277 275 342 186 -77 -62	-62 -68 -77 -68 -68 -77 -68 -68 -77 -68 -68 -78 -68 -78 -78 -78 -78 -78 -78 -78 -78 -78 -7	816 3570 398 1144 1448 1538 1560 2153 472 398 2151 3454 6627 4668 5266 4766 4766 4766 4766 4766 4766 4766 4
68 I0 8650 5900	428- 471 -1 159- 474 -6 266- 306 -6 353 -6 130 -6	97 102 4- 25- 7- 102 25- 7- 102 25- 208 180 250	I 43- 226- 226- 975 213 230 421 191 191 191 191 191 195 681- 552- 688- 654- 310- 161 207- 308 790 161 317 339 790 317 339 790 317 339 681 340 340 340 340 340 340 340 340 340 340
07 09 02 IO 04 IO 06 IO 0I II	01_07 03_07 05_07 07_07 09_07 02_08 04_08 06_08 06_08 08_08 08_08 09_03 09_03 09_03 09_03	IO 00 L DI 01 03 01 05 01 07 01 07 01 092 02 04 02 08 02 09 03 05 03 05 03 05 03 05 03 06 04 08 04 08 04 09 04 09 05 09 05 09 05 09 05 09 05 09 05 09 05 09 05	05 05 05 07 05 07 08 07 08 07 08 08 09 09 08 09 08 09 09 08 09 09 08 09 09 08 09 09 09 09 09 09 09 09 09 09 09 09 09
274 268 172 -59 247 255	343 -72 -78 -70 -40 501 445 354 257 295 150 1598 274	274 405 405 453 641 593 252 249 416 664 437 7241 193 257 241 493 257 241 493 257 241 493 257 241 493 257 241 493 257 241 493 257 241 493 257 241 493 257 257 257 257 257 257 257 257	961 507 -62 -71 -62 -77 -62 -363 489 268 280 280 280 280 280 280 280 280 280 28
26I 269- 174- 66- 264- 276-	254- 58- 77- 47- 89- 434 399 358 285 314 175 209	553- 414- 580- 555- 431- 208- 269- 163- 798 459- 573- 469- 198- 291- 188- 98- 502- 459- 504- 504- 504- 504- 504- 504- 504- 505- 505	840 450 138 352 13- 10- 533- 290- 2290- 2290- 350- 4241 1809 320 89- 532- 89- 532- 89- 533- 533- 533- 533- 533- 533- 533- 53

	_		`
Tableau	17	(criita	١,
Iabicat	1 4	<i>soulle</i>	. ,

00 08	429	397 03	3 05 15	6 I32-	01 11	330	338-	-08 02	192	195	-02 08	309	275 1	06 00	304	292-	07 05	258	269-
00 10	231	225- 05	5 05 20	I I56-	03 1	333	34I-	-01 03	123	128	-04 08	450	408	08 00	266	299-	02 06	-57	75-
00 I2	-67		7 O5 II	3 I28-	05 I	271		-03 03	338		-06 08	183	187	01 01	092	91-	04 06	272	208-
00 14	164		9 05 -4	0 83-	02 1	2 -64	28	-05 03	372		-08 08	-29	4	03 OI	112	97-	06 06	086	634
01 01	588		2 06 67	6 690-	04 1	2 - 5I	5.5	-07 03	206		-OI 09	372	368-	05 OI	-60	38-	08 06	-29	45
03 01	560		4 06 48	3 472-	OI I	3 284	338	-09 03	160		-03 09	447	404-	07 01	-54	I 4-	01 07	496	486
05 01	534		6 06 3				265	-02 04	160		-05 09	304	269-	10 90	086	77-	03 07	524	498
07 01	46I		8 06 2	9 282-				-04 04	329		-07 09	106	II4-	02 02	510	502	05 07	355	345
09 01	263			6 204-		L = 6		-06 04	300		-02 10	295	266-	04 02	493	444	07 07	212	221
02 02	241		3 07 I	9 119	l			-08 04	163	180-	-04 IO	249	245-	06 02	304	305	02 08	235	215
04 02	215		5 07 -	75 30				-01 05	453	435-	-06 IO	203	227-	OR 02	264	275	04 08	278	247
06 02	408		7 07 I	74 I5O-	-02 00	529	524-	-03 05	490	498-	11 IO-	-54	76	OI 03	307	313	06 08	103	119
08 02	343		2 08 3	3 330	-04 00	504	466-	-05 05	456	467-	-03 II	-49	26	03 03	542	552	01 09	278	253-
01 03	587	611 0	4 08 3	7 358	1-06 O) 48I	434-	-07 05	301	304-	-O2 I2	289	326	05 03	444	369	03 09	223	216-
03 03	239		6 08 4	32 384	-08 O	0 421	400-	-09 05	198	200-	-04 I2	203	28 I	07 03	149	134	05 09	226	208-
05 03	239		8 08 2	56 276	-0I 0	I 090	203-	-02 06	160	157	00 02	412	454	09 03	-92	105	02 10	40 I	42I-
07 03	338	313 0	I 09 3	6 326	-03 0	I 347	342-	-04 06	-60	8.3-	00 04	-43	8.3 -	02 04	292	285-	04 10	295	297-
09 03	236	223 0		[2] 198	-05 0			-06 06	-57	103-	00 06	189	212	04 04	501	463-	06 10	129	160-
02 04	590			20 210	-07 O		67	-08 06	-43	22-	00 08	-092	I07	06 04	347	299-	OI II	II7	95
04 04	394			23 233	-09 O		46	-OI 07	36 I	370	00 10	332	36 I	08 04	-92	75~	03 II	135	III
06 04	408	372 0			-02 0		593	-03 07	381	344	OO I 2	298	326	01 05	499	467-	05 II	152	158
08 04	34 I	334 0			-04 0		664	-05 07	378	348	02 00	693	848-	03 05	487	416-	O2 I2	223	265
01 05	137	118- 0	6 IO I	18 I3I-	-06 0	2 42I	412	-07 07	309	308	04 00	556	548-	05 05	304	274-	04 I2	117	195

Tableau 3. LiCl.2en. Coordonnées atomiques avec écarts-types en dix-millièmes des paramètres a, b et c. Constantes de température B et leurs écarts-types en Å

	$x \sigma_x$	$y = \sigma_y$	$z \sigma_z$	$B \sigma_B$
Cl	0000 ± 0	2154 ± 2	2500 ± 0	$3,04 \pm 0,04$
Li	5000 ± 0	1955 ± 11	2500 ± 0	$1,94 \pm 0,23$
N(1)	6355 ± 6	3133 ± 5	3570 ± 9	$2,63 \pm 0,10$
N(2)	3842 ± 6	1157 ± 4	4264 ± 9	$2,45 \pm 0,09$
C(1)	5844 ± 8	4088 ± 6	2574 ± 12	$3,32 \pm 0,14$
C(2)	4183 ± 6	0047 ± 5	4718 ± 12	$2,16 \pm 0,11$

pour l'en_p. Ces distances et angles sont assez comparables à ceux qui ont déjà été relevés dans d'autres structures de l'éthylènediamine (Tableau 5). Par contre, l'angle dièdre entre les plans N(1)-C(1)-C(1') et N(1')-C(1')-C(1) des molécules d'en_g (64,8°) est supérieur aux valeurs renseignées pour ces mêmes structures. Cette différence peut s'expliquer par le changement du nombre de coordination de l'ion métallique auquel les atomes d'azote sont directement liés. En effet, dans la

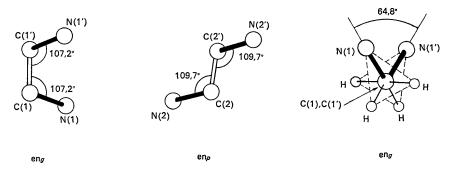


Fig. 1. Configuration des molécules d'éthylènediamine plane et gauche.

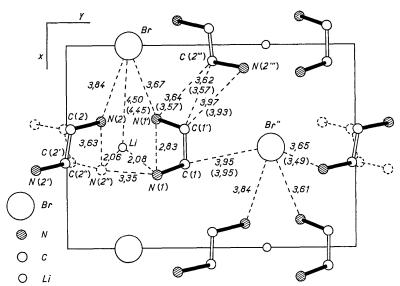


Fig. 2. Structure de LiBr. 2NH₂CH₂CH₂NH₂. Projection (001) d'une partie du contenu de la maille. Distances interatomiques en Å (les valeurs entre parenthèses se rapportent au dérivé chloré).

structure que nous décrivons, les molécules de coordinat sont disposées régulièrement autour de l'ion lithium; chaque cation est entouré de 4 atomes d'azote localisés aux sommets d'un tétraèdre assez déformé. Deux des azotes appartiennent à une même molécule d'en_g, les autres proviennent de deux en_p différentes, elles-mêmes reliées à deux nouveaux Li⁺ (Figs. 4 et 5). Au contraire, dans les complexes formés avec les mé-

taux de transition, l'entourage du cation est toujours octaédrique. L'ouverture de l'angle serait donc fonction du nombre de coordination de l'ion métallique et de la longueur de la liaison métal–azote.

La molécule d'en_p n'a, jusqu'à présent, été observée que dans deux dérivés du platine (Truter & Cox, 1956; Robson & Truter, 1965) (à l'exception de LiCl.2en). L'angle N(2)–C(2)–C(2') (109,7°) correspond à l'angle

Tableau 4. Facteurs de structure observés et calculés pour LiCl.2en On a noté successivement $h, k, 10F_o$ et $10F_c$. Le signe moins devant F_o indique une réflexion non observée: on a pris comme F_o la moitié du F_o minimum.

	COI	nme F_0 la moit	ie au F_0 minimu	ım.		
1	-26	-23 66 02 08 04 08 04 08 05 08 07 09 08 08 08 08 08 08 07 09 07 09 09 09 07 09 09 09 07 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 0	-31 51 69 66 -37 15 08 06 -37 15 08 06 -37 15 08 06 -37 15 08 06 -37 15 08 06 -38 18 02 06 -39 23R 04 06 -40 17 06 06 -40 17 06 06 -40 17 07 07 -40 17 08 06 -40 14 08 06 -40 14 08 06 -40 14 07 07 -73 02 07 -73 02 07 -73 02 07 -73 03 03 07 -23 27 07 -24 07 07 -25 27 07 -27 245 08 08 -40 64 02 08 -40 64 02 08 -40 64 02 08 -40 64 02 08 -40 64 02 08 -40 64 02 08 -40 64 02 08 -40 64 02 08 -40 64 07 07 -40 10 07 -40 10 07 -40 10 07 -40 10 07 -40 10 07 -40 10 07 -40 10 07 -40 10 07 -40 10 07 -40 10 08 -40 64 02 08 -40 64 02 08 -40 64 02 08 -40 64 02 -40 64 02 08 -40 64 07 09 -40 10 10 -40 40 40 -40 40 40 -40 40 40 -40 40 40 -40 40 40 -40 40 40 -40 40 40 -40 40 40 -40 40 40 -40 40 40 -	225 180 00 02 02 02 02 02 02	76 26 07- 01 538 298- 05- 01 538 298- 05- 01 539 3515- 03- 01 54 75- 01 01 54 75- 01 01 54 75- 01 01 54 75- 01 01 55 70 08- 01 55 70 08- 01 55 135 08- 02 56 87 04- 02 56 87 04- 02 56 87 04- 02 56 87 04- 02 56 87 04- 02 56 87 04- 02 57 08- 03- 03- 03- 03- 03- 03- 03- 03- 03- 03	204 237- 225 205- 95 61- 159 155- 177 126- 173 165- 176 186- 173 165- 174 148- 173 12 291- 173 201- 173 201- 174 160- 180 152 32- 175 201- 176 66- 180 152 32- 176 139 145 68 41- 177 77- 178 113 136 139 145 68 41- 178 178 178 178 178 178 178 178 178 178

tétraèdrique théorique. La réduction de ce même angle dans l'en_g (107,2°) doit être imputée à l'attraction qu'exerce l'ion lithium sur les deux azotes d'une même molécule d'en_g; une telle déformation n'existe pas dans l'en_g, les azotes étant reliés non plus à un seul ion mais à deux cations situés de part et d'autre de la molécule (Fig. 7).

L'édifice cristallin est formé de colonnes moléculaires $-\text{en}_p$ -Li(en_g) $-\text{en}_p$ -Li(en_g)- qui se prolongent (en zigzag) indéfiniment suivant l'axe d'allongement du cristal [001] (Fig. 7). La cohésion à l'intérieur d'une même colonne est assurée essentiellement par les liaisons Li-NH₂ (2,06; 2,08 Å) et par des interactions du type hydrogène entre Br et NH₂ (3,64; 3,65 Å) (Fig. 7). Le contact entre ces différentes colonnes (Fig. 6) est établi principalement par des ponts hydrogène Br-H₂N (3,67 Å) et secondairement par des interactions de Van der Waals plus lâches Br-H₂C (3,95 Å) et Br-H₂N (3,84 Å). Ceci explique la forme allongée des cristaux suivant [001], la cohésion dans cette direction étant plus forte que dans les deux autres. La Fig. 5 représente la disposition des colonnes dans la maille-plan *ab* (pro-

NCC'-N'C'C 45° * 48 † 45,8‡

Tableau 5. Distances et angles moyens de l'en dans d'autres composés d'addition (entourage octaédrique du cation)

	C-C'	C-N	N-C-C'
[Co(en) ₃]Cl ₃ .3H ₂ O	1∙54 Å	1·47 Å	112,6°
[Co(en) ₃]Cl ₃ . NaCl. 6H ₂ O	1.54	1.47	109,6
[Ni(en) ₃](NO ₃) ₂	1.50	1.50	111,1
	Nakatsu, Saito & K	urova (1956).	•
+	Nakatsu, Shiro, Sait		57).
‡	Swink & Atoji (1960		.,,
		0	@
~		<u></u>	
		a de la companya de l	
	Ø		
	©= [©]		> \$ ⁰
		Ø	
		es es	PT
W		\$	
z 1		⊚=0	0
93 °49'			
33 43	. 🔊	Ø	Ø
<u> </u>	<u> </u>		
		6	

○Br ØN

Fig. 3. Structure de LiBr. 2NH₂CH₂CH₂NH₂ en projection (010).

Oc ●Li

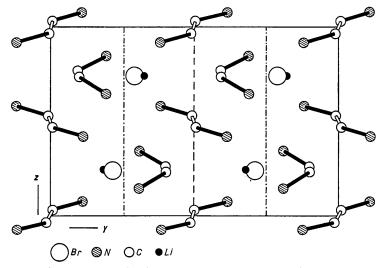


Fig. 4. Structure de LiBr. 2NH₂CH₂CH₂NH₂ en projection (100).

jection (001) du tronçon de hauteur c); la Fig. 7 détaille les liaisons à l'intérieur d'une même colonne (projection (010) d'un tronçon de colonne $x=\frac{1}{2}, y=1, z=2$).

Les distances Li-N (2,06; 2,08 Å) sont voisines de celles que l'on prévoit dans le cas d'une liaison ion-dipole (2,10 Å) en additionnant le rayon ionique du lithium (0,60 Å) au rayon Van der Waals de l'azote (1,50 Å) tels qu'ils sont indiqués par Pauling (1960). Elles sont sensiblement égales aux distances que nous avons relevées dans le complexe moléculaire LiCl.2C₅H₅N.H₂O (2,06; 2,05 Å) (Durant, Piret & Van Meerssche, 1967) mais légèrement supérieures aux valeurs trouvées dans LiCl.C₅H₅N (2,01 Å) (Durant, Verbist & Van Meerssche, 1966).

L'ion Br⁻ est lié étroitement à 6 groupes NH_2 provenant de 4 en_g et de 2 en_p. En effet, les longueurs de ces liaisons (3,64; 3,65; 3,67 Å) étant nettement inférieures à la somme des rayons de Van der Waals (~3,95 Å) il doit exister entre Br⁻ et H_2N des interactions plus étroites du type hydrogène, favorisées par la forte polarisabilité du groupe NH_2 dans le complexe. Les distances trouvées sont cependant supérieures à celles observées dans $NaBr.2CH_3CONH_2$ (3,40; 3,52; 3,54 Å) (Piret, Rodrique, Gobillon & Van Meerssche,

1966) qui sont voisines de la somme des rayons de liaisons hydrogène (3,53 Å) proposés par Wallwork (1962). Il existe en plus de ces interactions des liaisons NH₂-Br plus lâches (3,84 Å), chaque NH₂ étant, au total, relié à deux Br- par l'intermédiaire des deux hydrogènes. Nous avons calculé les angles de valence de l'azote en supposant que les hydrogènes sont situés sur les droites joignant Br- aux atomes d'azote (Tableau 6). Bien que les résultats obtenus soient peu significatifs étant donné le manque d'informations sur la localisation exacte des hydrogènes, on peut cependant constater que le lithium complète l'entourage tétraédrique de chaque azote (Fig. 5). Il se trouve donc placé approximativement dans le prolongement d'une des orbitales sp³ de l'azote dans NH₂. Cette situation particulière permet l'induction d'un moment dipolaire important dans le groupe NH₂ et autorise la formation éventuelle d'une liaison dative par transfert partiel d'électrons vers Li+.

Les plus courtes distances entre le lithium et le brome (4,35 et 4,50 Å) étant très supérieures à la somme de leurs rayons ioniques (2,56 Å) (Pauling, 1960), on doit en conclure que la liaison directe entre les deux ions est rompue lors de la formation du complexe.

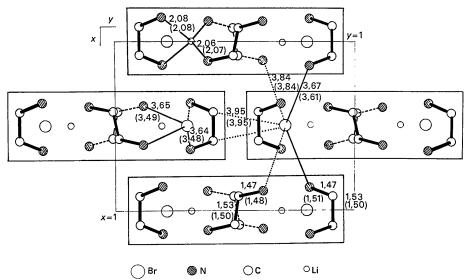


Fig. 5. Liaisons entre les différentes chaînes moléculaires. Distances interatomiques en Å (les valeurs entre parenthèses se rapportent au dérivé chloré).

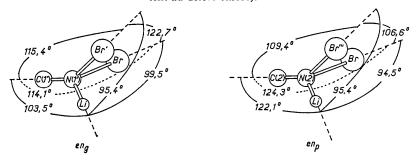


Fig. 6. Angles de valence de l'azote dans les molécules d'éthylènediamine (en supposant que les liaisons N-H...Br- sont en ligne droite).

Tableau 6. Distances interatomiques (Å) et angles de valence, avec écarts-types dans LiBr. 2en et LiCl. 2en.
(X = Cl. ou Br)

	(X = Cl ou Br)		
	LiBr. 2en	LiCl. 2e	n
N(1)— $-C(1)$	$1,474 \pm 0,022 \text{ Å}$	$1,508 \pm 0,0$	10
C(1)C(1')	$1,527 \pm 0,022$	$1,497 \pm 0,0$	
N(2)C(2)	$1,465 \pm 0,018$	$1,478 \pm 0,0$	
C(2)C(2')	$1,531 \pm 0,018$	$1,502 \pm 0,0$	
LiN(1)	$2,076 \pm 0,026$	$2,075 \pm 0,0$	
LiN(2)	$2,060 \pm 0,020$	2.067 ± 0.0	
LiN(2) LiX	$4,501 \pm 0,002$	$4,447 \pm 0.0$	01
LiX'	$4,354 \pm 0,002$	$4,204 \pm 0,0$	01
N(2)N(1')	$3,346 \pm 0,020$	$3,390 \pm 0,0$	09
N(1) - N(1')	$2,832 \pm 0,021$	$2,890 \pm 0,0$	09
N(2) - N(2'')	$3,631 \pm 0,021$	$3,609 \pm 0,0$	09
N(1')X	$3,666 \pm 0,014$	$3,614 \pm 0,00$	06
N(1')—X'	$3,638 \pm 0,016$	$3,482 \pm 0,00$	07
N(2)X	$3,843 \pm 0,013$	$3,840 \pm 0,00$	06
N(2'') -X'	$3,648 \pm 0,014$	$3,492 \pm 0,00$	07
C(1)X"	$3,952 \pm 0,017$	$3,947 \pm 0,0$	80
C(1') - C(2''')	$3,617 \pm 0,022$	$3,567 \pm 0,0$	10
N(2"")-C(1")	$3,968 \pm 0,021$	$3,926 \pm 0,00$	09
N(1')C(2''') C(2)C(2'')	$3,643 \pm 0,019$	$3,574 \pm 0,00$	09
C(2)— $C(2'')$	$4,029 \pm 0,022$	$3,946 \pm 0,0$	13
N(1)— $C(1)$ — $C(1')$	$107,2 \pm 1,3$ °	$108,3 \pm 0,6$	0
N(2)— $C(2)$ — $C(2')$	$109,7 \pm 1,1$	$109,4 \pm 0,5$	
N(2)— Li — $N(2'')$	$123,6 \pm 1,6$	$121,6 \pm 0,7$	
N(1)— Li — $N(1')$	$86,0 \pm 1,3$	$88,3 \pm 0,6$	
N(1)—Li—N(2) C(1')—N(1')—X	$108,0 \pm 0,6$	$109,9 \pm 0,3$	
C(1')— $N(1')$ – X	$114,1 \pm 0,9$	$113,2 \pm 0,4$	
C(1')— $N(1')$ — X'	$115,4 \pm 1,0$	$117,6 \pm 0,5$	
C(1')—N(1')-Li	$103,5 \pm 1,2$	$122,2 \pm 0,6$	
LiN(1')-X	$99,5 \pm 0,6$	$99,3 \pm 0,3$	
LiN(1')-X'	$95,4 \pm 0,5$	$94,9 \pm 0,2$	
XN(1')-X'	$122,7 \pm 0,4$	$122,8 \pm 0,2$	
C(2)N(2)-X	$124,3 \pm 0,8$	$124,8 \pm 0,3$	
C(2)N(2)-X'''	$109,4 \pm 0,9$	$110,2 \pm 0,5$	
C(2)— $N(2)$ – Li	$122,1 \pm 1,2$	$122,2 \pm 0,6$	
LiN(2) -X	$94,5 \pm 0,5$	$92,7 \pm 0,3$	
LiN(2) -X'''	$95,4 \pm 0,7$	94.8 ± 0.3	
XN(2) -X'''	$106,6 \pm 0,3$	$107,4 \pm 0,2$	
N(1) C(1) C(1')-	N(1') C(1') C(1)	64,8° 61,4°	

LiCl.2NH₂CH₂CH₂NH₂

La disposition générale des atomes dans la maille cristalline correspond à celle que nous venons de décrire pour le composé bromé. Nous constatons d'après le relevé des distances interatomiques (Tableau 6) un compacité plus grande des molécules et des ions suivant [001]. Les longueurs des liaisons N-H···Cl (3,48; 3,49 Å) dans les colonnes moléculaires sont inférieures de 0,16 Å à celles trouvées précédemment (3,64; 3,65 Å). Cet écart résulte de la différence (0,15 Å) entre les rayons ioniques du chlore (1,81 Å) et du brome (1,96 Å) (Pauling, 1960). Ceci explique en partie l'inégalité des paramètres c mesurés sur les spectres des deux structures isotypes (8,32; 8,10 Å). Ces liaisons hydrogène, bien que nettement plus fortes que de simples interactions de Van der Waals (somme des rayons de Van der Waals = 3,80 Å) sont cependant plus lâches que celles indiquées pour d'autres composés connus (voir exemple: Pimentel & McClellan, 1960). Il semble que ce sont essentiellement les forces de répulsion dans une même colonne (Fig. 7) qui s'opposent à la formation de ponts hydrogène plus étroits (distance prévue par Wallwork: 3,34 Å).

L'empilement des colonnes dans la direction de l'axe a (Fig. 5) paraît limité par les forces répulsives entre molécules d'éthylènediamine juxtaposées suivant [001] (3,57 Å). Toutefois les interactions de NH₂ avec Cl-(3,61 Å) étant plus énergétiques qu'avec Br-(3,67 Å) on observe un léger retrécissement du paramètre a (8,99 \rightarrow 8,88 Å). Les dimensions de la structure suivant [010] ne sont guère modifiées (12,69; 12,64 Å); l'équilibre est assuré dans cette direction par le contact entre les groupes CH₂ des en_g (Fig. 5). Les distances Li-N, C-C et C-N étant assez comparables (dans les limites des erreurs expérimentales) pour les deux structures, les changements observés résultent donc uniquement de la différence des rayons ioniques de Br- et Cl-.

Les constantes de température sont légèrement supérieures dans LiCl.2en; ceci est en accord avec la température de décomposition plus basse de ce composé. Il est intéressant de noter que dans les colonnes moléculaires, les amplitudes des vibrations des atomes de carbone et d'azote croissent régulièrement en allant du centre à la périphérie (dans le plan *ab*) (LiBr: C(2) 2,24; N(2) 2,33; N(1) 2,40; C(1) 2,95 Ų. LiCl: C(2) 2,16; N(2) 2,45; N(1) 2,63; C(1) 3,32 Ų). Ces données paraissent indiquer un mouvement d'oscillation de chaque colonne autour d'un axe [001] passant par le centre des vecteurs C(2)–C(2').

Nous tenons à exprimer notre gratitude à MM. G.S.D. King et J. De Kerf pour l'aide qu'ils nous ont apportée lors de l'affinement des structures. Nos re-

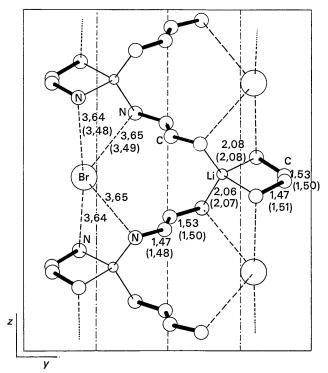


Fig. 7. Cohésion dans une colonne moléculaire parallèle á l'axe [001]. Distances interatomiques en Å (les valeurs entre parenthèses se rapportent au dérivé chloré).

merciements vont également au FNRS et à l'IRSIA pour les mandats accordés à deux d'entre nous, ainsi qu'au Fonds de la Recherche Fondamentale Collective pour le soutien financier dont a bénéficié cette recherche.

Nous apprenons que la structure de LiCl. 2en vient d'être décrite brièvement par Brusset, Gillier-Pandraud & Delcroix (1966) dans une communication au Bulletin de la Société Chimique de France. Retenons que les distances interatomiques indiquées par les auteurs, bien que moins précises (écart-type moyen de 0,04 Å; R=0,172) sont comparables à celles que nous donnons ci-dessus, à l'exception toutefois des liaisons avec le lithium dont la position proposée est manifestement inexacte.*

Références

- BRUSSET, H., GILLIER-PANDRAUD, H. & DELCROIX, S. (1966). Bull. Soc. chim. Fr. 10, 3363.
- Buerger, M. J. (1958). X-ray Crystallography, p. 377. New York: John Wiley.
- CRUICKSHANK, D. J. W., PILLING, D. E., BUJOSA, A., LOVELL, F. M. & TRUTER, M. R. (1961). In Computing Methods and the Phase Problem in X-ray Crystal Analysis. p. 45. Oxford: Pergamon Press.
- DURANT, F. (1965). Thèse de doctorat. Université de Louvain.
- Durant, F., Piret, P. & Van Meerssche, M. (1967). *Acta Cryst.* 22, 52.
- * Note ajoutée aux épreuves: Cette position est corrigée dans un article plus detaillé de Mme Jamet-Delcroix qui vient de paraître (Jamet-Delcroix, 1967).

- DURANT, F., VERBIST, J. & VAN MEERSSCHE, M. (1966). Bull. Soc. chim. Belges, 75, 788.
- GERMAIN, G., PIRET, P., VAN MEERSSCHE, M. & DE KERF, J. (1962). Acta Cryst. 15, 373.
- Howells, E. R., Phillips, D. C. & Rogers, D. (1950). Acta Cryst. 3, 210.
- International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.
- ISBIN, H. S. & KOBE, K. H. (1945). J. Amer. Chem. Soc. 67, 464.
- JAMET-DELCROIX, S.H. (1967). J. Chim. Phys. 64, 601.
- King, G. S. D. (1963). 1620 L.S. Refinement, program ERA 302.
- LAVINE, J. R. & ROLLETT, J. D. (1956). Acta Cryst. 9, 269.
 NAKATSU, K., SAITO, Y. & KUROYA, H. (1956). Bull. Chem. Soc. Japan, 29, 428.
- NAKATSU, K., SHIRO, M., SAITO, Y. & KUROYA, H. (1957). Bull. Chem. Soc. Japan, 30, 158.
- PAULING, L. (1960). The Nature of the Chemical Bond. Ithaca: Cornell Univ. Press.
- PIMENTEL, G. L. & McClellan, A. L. (1960). The Hydrogen Bond. p. 290. London: Freeman.
- Piret, P., Rodrique, L., Gobillon, Y. & Van Meerssche, M. (1966). Acta Cryst. 20, 482.
- ROBSON, A. & TRUTER, M. R. (1965). J. Chem. Soc. p. 630. SIM, G. A. (1958). Acta Cryst. 11, 420.
- SWINK, N. L. & ATOJI, M. (1960). Acta Cryst. 13, 639.
- TRUTER, M. R. & COX, E. G. (1956). J. Chem. Soc. p. 948. VAND, V., EILAND, P. F. & PEPINSKY, R. (1957). Acta Cryst. 10, 303.
- WALLWORK, S. C. (1962). Acta Cryst. 15, 758.
- WIEBENGA, E. H. & SMITS, D. W. (1950). Acta Cryst. 3, 265. WILSON, A. J. C. (1942). Nature, Lond. 150, 151.

Acta Cryst. (1967). 23, 788

Two Independent Determinations of the Crystal and Molecular Structure of *trans*-Dichlorobis(dimethyl sulfoxide)palladium(II)

By M. J. Bennett, F. A. Cotton and D. L. Weaver

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, U.S.A.

AND R.J. WILLIAMS AND W.H. WATSON

Department of Chemistry, Texas Christian University, Fort Worth, Texas 76129, U.S.A.

(Received 30 January 1967 and in revised form 14 April 1967)

The crystal and molecular structure of dichlorobis(dimethyl sulfoxide)palladium(II), $PdCl_2(DMSO)_2$, has been determined from three-dimensional X-ray data in two independent studies. The complex crystallizes in the space group $P2_1/c$ of the monoclinic system with two molecules in a unit cell of dimensions (averages of the two studies) a=6.460, b=9.380, c=9.555 Å and $\beta=111.8^{\circ}$. Since the palladium atoms lie on crystallographic centers of symmetry the compound assumes a *trans* planar configuration. The dimethyl sulfoxide is found to be sulfur-bonded to the palladium atom in accordance with infrared spectral data. Anisotropic least-squares refinements led to residuals of 0.031 (with hydrogen atoms held fixed) and 0.118 (hydrogen atoms omitted) for the M.I.T. and Texas Christian studies, respectively. Some important dimensions (weighted averages) are: Pd-Cl 2.287 Å, Pd-S 2.298 Å, S-O 1.475 Å, S-C 1.778 Å, angle CSO 109.1° .

Introduction

The isolation of well-defined complexes containing dimethyl sulfoxide, (CH₃)₂SO (hereafter abbreviated

DMSO), was first reported relatively recently (Lindquist & Einarsson, 1959; Cotton & Francis, 1960), though the powerful solvent properties of DMSO were generally recognized much earlier. A number of other